Arquivo da Categoria: França

141. D’Hondt vem

Como se processam eleições para vários mandatos simultaneamente, Teoria das eleições, Assembleia da República, Recolução Francesa, Napoleão, Borda, Condorcet, D'Hondt.

   É fácil perceber como se processa, na maioria das eleições, a determinação do vencedor. Por exemplo, vota-se, nas eleições presidenciais, num candidato e o vencedor é o candidato mais votado. Ou então, vota-se, nas eleições autárquicas, num partido e o vencedor é o partido mais votado. Vota-se, nas eleições autárquicas, num partido e o vencedor é o partido mais votado. Mas como se processam as eleições legislativas para a Assembleia da República Portuguesa? Facilmente se constata que há mais do que um vencedor. Há 230 deputados na Assembleia da República Portuguesa. Não há um vencedor mas 230 vencedores. Pode pensar-se que é só verificar a percentagem dos votos totais e com base nelas atribuirem-se os mandatos. Para se perceber porque razão, apesar de ser verosímil, a contagem percentual não é a correcta nem, na maioria das situações, viável atende-se nestes exemplos.

   Numa eleição para 10 mandatos, votam 1000 pessoas. O Partido A tem 220 votos ou seja 220/1000 = 0,22 = 22%. O Partido B tem 450 votos ou 450/1000 = 0,45 = 45%. O partido C tem 330 votos ou 330/1000 = 0,33 = 33%. Assim, o Partido A terá 10×0,22 = 2,3 mandatos ou arredondado 2 mandatos. O Partido B terá 10×0,45 = 4,2 mandatos ou arredondado 4 mandatos. O Partido C terá 10×0,33 = 3,5 mandatos ou arredondado 4 mandatos. Os 10 lugares estão preenchidos. Parece estar tudo bem: as percentagens forneceram resultados que, arredondados, preencheram os 10 lugares que foram a votação. Mas a situação geralmente não é assim tão ordenada pois geralmente calcular percentagens e arredondar resultados resulta em mais deputados do que lugares ou menos deputados do que lugares.

 Na mesma eleição considere-se que alternativamente o Partido A teve 250 votos ou 250/1000 = 0,25 = 25%. O Partido B teve 400 votos ou 400/1000 = 0,40 = 40%. O Partido C teve 350 votos ou 330/1000 = 0,35 = 35%. Assim, o Partido A terá 10×0,25 = 2,5 mandatos ou arredondado 3 mandatos. O Partido B teve 10×0,40 = 4 mandatos. O Partido C teve 10×0,35 = 3,5 mandatos ou arredondado 4 mandatos. Obtiveram-se 11 deputados para 10 lugares.

   Mas também podia ter acontecido que  o Partido A tivesse 240 votos ou 240/1000 = 0,24 = 24%. O Partido B tivesse 430 votos ou 430/1000 = 0,43 = 43%. O Partido C tivesse 330 votos ou 330/1000 = 0,33 = 33%. Assim, o Partido A teria 10×0,24 = 2,4 mandatos ou  arredondado 2 mandatos. O Partido B teria 10×0,43 = 4,3 mandatos ou arredondado 4 mandatos. O Partido C teria 10×0,33 = 3,3 mandatos ou arredondado 3 mandatos. São eleitos 9 deputados para 10 lugares.

   O simples cálculo percentual resulta em desajustamentos entre o número de deputados eleitos e o número de lugares postos a votação. A votação passou a fazer parte integrante da eleição dos representantes políticos de um povo desde a introdução da «democracia» ateniense no século 6 AEC. Mas a chamada teoria das eleições (os métodos pelos quais uma votação deve corresponder a cargos elegíveis) surgiu durante a Revolução Francesa (entre 1789 e 1799). Era necessário criar um método que permitisse a eleição do número exato de pessoas para os lugares elegíveis, respeitando a proporção dos votos. Surgiram, na altura, 2 métodos diferentes para o fazer.

   Jean-Charles Chevalier de Borda (1763-1799) foi eleito presidente da Académie des Sciences, em 1762. Em 1770, definiu um método de eleição para os membros da academia, conhecido hoje como Contagem de Borda, usado durante mais de 20 anos. Em 1800, Napoleão Bonaparte decretou a eliminação desse método e instituiu um método que ele próprio tinha criado mas que tinha contradições que foram reveladas num inquérito feito em 1813 e o método não sobreviveu ao estadista (que governou entre 1804 e 1814 e 100 dias em 1815). Há, na Lua, uma cratera de nome Borda em sua honra, principalmente por ter sido ele que construiu a barra cujo comprimento foi a medida aceite para o metro durante séculos.

   Marie Jean Antoine Nicolas Caritat, marquês de Condorcet (1743-1794) foi nomeado Secretário da mesma Académie des Sciences. Como desaprovava a Contagem de Borda, criou um método que viria a ser conhecido como o Método de Condorcet. Condorcet tinha verificado que era possível, numa mesma eleição para múltiplos lugares, uma maioria preferir A a B, outra B a C e outra C a A. Isto conduz a um paradoxo, conhecido como o Paradoxo de Condorcet, em quem por um lado A vence B que vence C (logo A vence C) mas simultaneamente C vence A. Condorcet é uma comuna francesa no Sul da França.

   Depois, no final do século XVIII, os EUA foram fundados e vários métodos foram propostos para eleger de forma justa e proporcional os representantes das colónias na House of Representatives. Estadistas como Alexander Hamilton, Thomas Jefferson e Daniel Webster proposeram diferentes métodos para o conseguir. O método proposto por Jefferson foi depois redescoberto e renomeado por Victor D’Hondt (1841-1901), matemático belga. O Método de D’Hondt (que é igual ao Método de Jefferson) é atualmente usado na Argentina, na Áustria, na Bélgica, na Bulgária, no Chile, na Croácia, na Escócia, na Eslovénia, na Espanha, na Finlândia, em Israel, no Japão, na Holanda, no País de Gales, na Polónia, na República Checa, na Suíça, na Turquia e em Portugal.

   Na Eleição para a Assembleia da República Portuguesa, o método usado para fazer corresponder os votos ao número exacto de 230 deputados é o Método de D’Hondt (muitas vezes erroneamente chamado de Método de Hondt) como explicado pela Comissão Nacional de Eleições. No Método de D’Hondt (ou Método de Jefferson) considera-se o número de votos que cada partido teve. Divide-se então sucessivamente esse valor pelo número de deputados já eleitos + 1.

   Por exemplo, considere-se a mesma eleição, para 10 lugares com 1000 votos determinados, em que há os partidos A, B e C. O Partido A teve 240 votos, o Partido B teve 430 votos e o Partido C teve 330 votos. Como se viu em cima, o cálculo percentual leva à determinação de deputados geralmente diferente dos 10 necessários. O Método de D’Hondt começa por colocar por ordem crescente de votos os partidos. Neste caso, B 430; C 330; A 240. O partido que tem a maior votação elege o primeiro lugar. Neste caso, B elege o primeiro lugar.Divide-se depois a votação de cada partido pelo número de lugares que já tem + 1. Neste caso divide-se a votação de B por 2, ficando 430/2 = 215.O partido que tem o maior valor para esse lugar ganha esse lugar. Neste caso C tem 330, logo elege 1 pessoa para o lugar 2. Em seguida, divide-se o número de votos de cada partido pelos lugares que já tem + 1. Neste caso, B = 430 / 2 = 215; C = 330/2 = 215; A = 240/1 = 240. O valor mais alto para o lugar 3 é o do partido C, com 330. Então C elege uma pessoa para o lugar 3. Para o lugar 4 divide-se B = 430/2=215; C=330/2=115; A = 240/2 = 120. É B que tem o maior valor para o lugar 4 e elege uma pessoa para esse lugar. Continuando o processo obtém-se para: B 5 lugares; C 3 lugares; A 2 lugares.

   Uma outra forma de usar o Método de D’Hondt é dividir os votos de cada lista por 2 em seguida por 3, em seguida por 4 e assim sucessivamente. O número mais elevado na tabela é o primeiro deputado, o seguinte o segundo. Da qualquer uma das formas, obtém-se a seguinte distribuição de lugares: Partido B 5 lugares; Partido C 3 lugares; Partido A 2 lugares. Este método pode ser usado para qualquer situação em que, numa votação, se tem de escolher vários lugares numa só eleição.

   Este é o método pelo qual, em Portugal, se escolhem os deputados à Assembleia da República. O Presidente da República convida depois o partido mais votado a indicar um Primeiro-Ministro (que é geralmente o líder do partido mas não é obrigatório) que nomeia em seguida os minitros do seu governo. É desta forma que, na noite das eleições, vão anunciando sucessivamente os deputados de cada partido que já foram eleitos. Não é uma questão percentual. É uma questão de D’Hont. Estes foram os resultados das eleições legislativas de 2015.